2°C Investing Initiative
PACTA for Banks Training Webinar:
Matching a loan book to physical assets in the real economy

About our funders: This project is part of the International Climate Initiative (IKI). The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) supports this initiative on the basis of a decision adopted by the German Bundestag. This project has also received funding from the European Union LIFE program. The views expressed here are the sole responsibility of the authors and do not necessarily reflect the views of the funders.
What we’ll cover

Matching a bank’s loan book to physical assets in the real economy, using the Asset-level Data set provided by Asset Resolution and the r2dii.match software package.
• Recap of methodology & the matching process
• User resources
• Matching workflow with examples and code (r2dii.match)
 • Step 1 – Import files
 • Sector Classification Codes
 • Step 2 – match_name function
 • String Matching algorithms
 • Step 3 – Manual matching
 • Step 4 – Overwrite file
 • Step 5 – Prioritize function

• Next steps
• Q&A
Methodology Recap

Corporate lending portfolios

Alignment of loan books is benchmarked against climate change scenarios and the market

Climate Change Scenarios

Metrics

Physical Assets in the Real Economy

Loans are mapped to the physical assets in the real economy and their corresponding production values

Emission Intensity

Figure SPM 5 from page 9 of the 2021 ASB Summary for Policymakers
Mapping physical assets to a bank’s exposures – in practical terms

Corporate lending portfolios → Physical assets in the real economy

r2dii.match

Loan book (LBK) → Asset Level Data (ALD)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>id_loan</td>
<td>id_direct_name</td>
<td>div</td>
<td>id_intern</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>c301</td>
<td>BP plc</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>c301</td>
<td>BP plc</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>L3</td>
<td>c301</td>
<td>BP</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>L4</td>
<td>c302</td>
<td>dilute money</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>L5</td>
<td>c303</td>
<td>dilute money</td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>name_corporate</td>
<td>technology_year</td>
<td>products</td>
<td>products</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Top plc</td>
<td>oil and gas</td>
<td>2019</td>
<td>GI</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Top plc</td>
<td>oil and gas</td>
<td>2019</td>
<td>GI</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Top plc</td>
<td>oil and gas</td>
<td>2019</td>
<td>GI</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Top plc</td>
<td>oil and gas</td>
<td>2019</td>
<td>GI</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Top plc</td>
<td>oil and gas</td>
<td>2019</td>
<td>GI</td>
<td></td>
</tr>
</tbody>
</table>
Terminology / Disclaimer

- Examples given in this presentation are illustrative only
- The names of companies may be represented differently in the asset-level data set provided by Asset Resolution

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Level Data</td>
<td>ALD</td>
<td>The data set to which the loan book is being matched</td>
</tr>
<tr>
<td>Loan book</td>
<td>LBK</td>
<td>The bank’s corporate lending book</td>
</tr>
<tr>
<td>Direct Loan Taker</td>
<td>DL</td>
<td>The counter party that receives the loan</td>
</tr>
<tr>
<td>Ultimate Parent</td>
<td>UP</td>
<td>The owner of the counter party receiving the loan</td>
</tr>
<tr>
<td>2 Degrees Investing Initiative</td>
<td>2DII</td>
<td>The think tank behind the PACTA methodology</td>
</tr>
<tr>
<td>Asset Resolution</td>
<td>AR</td>
<td>The data provider proving the free PACTA for banks data set</td>
</tr>
</tbody>
</table>
User resources: Transition Monitor website

User Guides and templates
User Guide 1 – Resource Planner
User Guide 2 - Prerequisites and Preparing your loan book
Loan Book Template

Webinars
Webinar 1 Introduction to the Methodology and tool kit
Webinar 2 (today) Matching a loan book to physical assets in the real economy
Webinar 3 (TBC) Analysis and Visualisation
User resources: r2dii.match website

Get started – instructions for using the code with reproducible examples and mock data sets

r2dii.match

These tools implement in R a fundamental part of the software FACTA (Paris Agreement Capital Transition Assessment), which is a free tool that calculates the alignment between financial portfolios and climate scenarios (https://2degrees-investing.org). Financial institutions use FACTA to study how their capital allocation impacts the climate. This package matches data from financial portfolios to asset level data from market intelligence databases (e.g. power plant capacities, emission factors, etc.). This is the first step to assess if a financial portfolio aligns with climate goals.

Installation
Before you install r2dii.match you may want to:

Links
Download from CRAN at
https://cloud.r-project.org/
package=r2dii.match
Browse source code at
https://github.com/2DegreeInvesting/
r2dii.match/
Report a bug at
https://github.com/2DegreeInvesting/
r2dii.match/issues
Learn more at
https://2degrees-investing.org/
User resources: r2dii.match Website

Articles cover certain issues that may arise and other useful topics. For example, matching a large loan book and calculating matching coverage.

r2dii.match

These tools implement in R a fundamental part of the software PACTA (Paris Agreement Capital Transition Assessment), which is a free tool that calculates the alignment between financial portfolios and climate scenarios. Financial institutions use PACTA to study how their capital allocation impacts the climate. This package matches data from financial portfolios to asset level data from market-intelligence databases (e.g. power plant capacities, emission factors, etc.). This is the first step to assess if a financial portfolio aligns with climate goals.

Installation

Before you install r2dii.match you may want to:

Links

Download from CRAN at https://cloud.r-project.org/package=r2dii.match
Browse source code at https://github.com/2DegreesInvesting/r2dii.match/
Report a bug at https://github.com/2DegreesInvesting/r2dii.match/issues
Learn more at https://2degrees-investing.org/
User resources: r2dii.match Website

News contains updates on the code. For example, bugs fixes, feature enhancements, new features, etc...

r2dii.match

These tools implement in R a fundamental part of the software PACTA (Paris Agreement Capital Transition Assessment), which is a free tool that calculates the alignment between financial portfolios and climate scenarios (https://2degrees-investing.org/). Financial institutions use PACTA to study how their capital allocation impacts the climate. This package matches data from financial portfolios to asset level data from market intelligence databases (e.g. power plant capacities, emission factors, etc.). This is the first step to assess if a financial portfolio aligns with climate goals.

Installation

Before you install r2dii.match you may want to:

Links

Download from CRAN at
https://cloud.r-project.org/
package=r2dii.match

Browse source code at
https://github.com/2DegreesInvesting/
r2dii.match/

Report a bug at
https://github.com/2DegreesInvesting/
r2dii.match/issues

Learn more at
https://2degrees-investing.org/
Resources available to a user: r2dii.match Website

Links – here you can find the source codes and report any bugs, new features or feature enhancement

r2dii.match

These tools implement in R a fundamental part of the software PACTA (Paris Agreement Capital Transition Assessment), which is a free tool that calculates the alignment between financial portfolios and climate scenarios (https://2degrees-investing.org/). Financial institutions use PACTA to study how their capital allocation impacts the climate. This package matches data from financial portfolios to asset level data from market-intelligence databases (e.g. power plant capacities, emission factors, etc.). This is the first step to assess if a financial portfolio aligns with climate goals.

Installation

Before you install r2dii.match you may want to:

Links

Download from CRAN at https://cloud.r-project.org/package=r2dii.match

Browse source code at https://github.com/2DegreesInvesting/r2dii.match/

Report a bug at https://github.com/2DegreesInvesting/r2dii.match/issues

Learn more at https://2degrees-investing.org/
User resources: R-Documentation

- Within the code, you can access the function documentation
- This explains how to use the functions and all the arguments
- This can be accessed by typing
 - In the script, type `r2dii.match::match_name`
 `r2dii.match::prioritize`
 - In the console type `?r2dii.match`
Press F1

Match a loanbook and asset-level datasets (ald) by the mcmc

Description
match() returns the match between names in a loanbook dataset (columns can be names of any type, such as strings, dates, or numbers) and asset-level datasets. The function is designed to handle the possibility of multiple matches for each name.

Usage
match(x, names)

Arguments
- x: the loanbook dataset
- names: the asset-level datasets

Examples
Load datasets
loanbook <- read.csv("loanbook.csv")
assets <- read.csv("assets.csv")

Match datasets
matches <- match(loanbook, assets)

Resources available to a user: External resources

- You may encounter errors that are unrelated to the r2dii packages
- Read the error messages and work out what is going wrong
- These are some commonly used resources to help overcome common errors messages in R

 - [Stackoverflow](https://stackoverflow.com)
 - [Rstudio community](https://community.rstudio.com)
Work flow:
Step 1. Import files

- Import loan book – in the correct template: `r2dii.data::loanbook_demo`
- Import Asset level Data set
 - No right way to do this
 - Possible functions
 - `readr`
 - `Read.csv`

- Note (optional) – You may want to segment the LBK and ALD by sectors
 - This will make it more manageable to match and prevent potential issues with the size of the files and memory limits

Templates can be found in `r2dii.data`
The Asset Level Data set from Asset Resolution can be accessed by filing a data request for free at: https://www.transitionmonitor.com/pacta-for-banks-2020/data/
You can use another data provider but in order to work with the code it must be inputted in the same format in `r2dii.data::ald_demo`

Code---------------------------

option 1 – Preferred

```r
your_loanbook <- readr::read_csv("demo_lbk.csv")
your_ald <- readr::read_csv("demo_ald.csv")
```

note depending on the separator in your csv file you may need to use `read_csv2` (;) as opposed to `read_csv` (,)

option 2

```r
your_loanbook <- read.csv("......enter file path...... /demo_lbk.csv")
your_ald <- read.csv("......enter file path....../demo_ald.csv")
```
Sector Classification Bridges

- Sector classification bridges between common code systems and 2di sectors are provided
- Including:
 - NACE
 - GICS
 - ISIC
 - SIC
 - NAICS

- This can be accessed via `r2di.data:nace_classification`

- More codes than are technically in scope are included

The rational behind including more codes than are technically in scope is to capture companies that are misclassified or for whatever reason recorded under the wrong code.

You can filter the “borderline” column with in the respective bridges to equal FLASE to find the codes that are precisely in scope.
Sector Classification Bridges

Example from the NACE bridge

<table>
<thead>
<tr>
<th></th>
<th>original_code</th>
<th>code</th>
<th>code_level</th>
<th>sector</th>
<th>borderline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>60</td>
<td>2</td>
<td>Oil & Gas</td>
<td>FALSE</td>
</tr>
<tr>
<td>2</td>
<td>6.1</td>
<td>610</td>
<td>3</td>
<td>Oil & Gas</td>
<td>FALSE</td>
</tr>
<tr>
<td>4</td>
<td>6.2</td>
<td>620</td>
<td>4</td>
<td>Oil & Gas</td>
<td>FALSE</td>
</tr>
<tr>
<td>5</td>
<td>6.1</td>
<td>6100</td>
<td>4</td>
<td>Oil & Gas</td>
<td>TRUE</td>
</tr>
<tr>
<td>6</td>
<td>9.1</td>
<td>910</td>
<td>5</td>
<td>Oil & Gas</td>
<td>TRUE</td>
</tr>
<tr>
<td>7</td>
<td>9.1</td>
<td>9100</td>
<td>4</td>
<td>Oil & Gas</td>
<td>TRUE</td>
</tr>
<tr>
<td>8</td>
<td>35.2</td>
<td>352</td>
<td>4</td>
<td>Oil & Gas</td>
<td>TRUE</td>
</tr>
<tr>
<td>9</td>
<td>35.21</td>
<td>3521</td>
<td>4</td>
<td>Oil & Gas</td>
<td>TRUE</td>
</tr>
<tr>
<td>10</td>
<td>35.22</td>
<td>3522</td>
<td>4</td>
<td>Oil & Gas</td>
<td>TRUE</td>
</tr>
<tr>
<td>11</td>
<td>35.23</td>
<td>3523</td>
<td>4</td>
<td>Oil & Gas</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

Oil & Gas

- **Upstream**
- **Midstream**
- **Downstream**

- **Borderline = FALSE**
 - 6100 = Extraction of crude petroleum
 - 6200 = Extraction of natural gas

- **Perfectly in scope**

- **Close to scope – there is a chance it is mislabelled**

- **Borderline = TRUE**
 - 3521 = Manufacture of gas
 - 3522 = Distribution of gaseous fuels through mains
Work flow: Step 2. Matching

- Match the LBK and the ALD using `r2dii.match::match_name`

<table>
<thead>
<tr>
<th>match_file <- match.name(your_loanbook, your_ald)</th>
</tr>
</thead>
<tbody>
<tr>
<td>match_file 404 obs. of 26 variables</td>
</tr>
<tr>
<td>your_ald 17398 obs. of 11 variables</td>
</tr>
<tr>
<td>your_loanbook 392 obs. of 10 variables</td>
</tr>
</tbody>
</table>

- Optional advanced matching
- Within the `match_name` function there are additional functions allowing a user to customise this stage

```
match_file <- match.name(your_loanbook, your_ald, by_sector = TRUE, min_score = 0.8, method = "jw", p = 0.1, overwrite = NULL)
```

- `min_score` allows you to set the matching score threshold
- `by_sector` allows you to match any names irrespective of the sector classification
- More on `overwrite` later

Loanbook / ald:
```
r2dii.data::loanbook_demo  r2dii.data::ald_demo
```

by_sector:

min_score:

Method:
"cosine", "jaccard", "jw", "soundex"). See `stringdist::stringdist-metrics`.

P: Prefix factor for Jaro-Winkler distance. The valid range for p is 0 <= p <= 0.25. If p=0 (default), the Jaro-distance is returned. Applies only to method='jw'.

Overwrite: A data frame used to overwrite the sector and/or name columns of a particular direct loantaker or ultimate parent. To overwrite only sector, the value in the name column should be NA and vice-versa. This file can be used to manually match loanbook companies to ald.

Code-----------------------------

```r
# simple version
match_file <- match_name(your_loanbook, your_ald)

# advanced matching
match_file <- match_name(your_loanbook, your_ald, by_sector = TRUE,
                        min_score = 0.8, method = "jw", p = 0.1, overwrite = NULL)
```


String matching

- String matching assesses the characters and the order of the characters between two names.
- It then outputs a measure of the similarity of the two words.
- For example, there is a 80% similarity between “Royal Dutch Shell” and “R Dutch Shell” based on the order and letters involved.

<table>
<thead>
<tr>
<th>Name in LBK</th>
<th>Name in ALD</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP plc</td>
<td>BP plc</td>
<td>1</td>
</tr>
<tr>
<td>BP</td>
<td>BP plc</td>
<td>0.85</td>
</tr>
<tr>
<td>British Petroleum</td>
<td>BP plc</td>
<td>0.3</td>
</tr>
<tr>
<td>Shell</td>
<td>BP</td>
<td>0</td>
</tr>
</tbody>
</table>

Illustrative example of string matching BP
String matching

There are different algorithms that you can choose from

```r
match_file <- match_name(your_loanbook, your_id, by_sector = TRUE,
                          min.score = 0.8, method = "jw", p = 0.1, overwrite = NULL)
```

The different methods use slightly different algorithms to determine the score in the previous slide.

Options:
"osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw", "soundex".

See `stringdist:stringdist-metrics`.
Work flow:
Step 3. Manual matching

- Export the “match_file” file from R to Excel

```r
#export match_file to excel
write.csv(match_file, ".....filepath..../match_file.csv")
```

Code-----------------------------

#export match_file to excel
write.csv(match_file, ".....filepath..../match_file.csv")

or (preferred)
Write_csv(match_file, ".....filepath..../match_file.csv")

note depending on the separator in your csv file you may need to use write_csv2
(;) as a pose to write_csv (,)

Work flow:
Step 3. Manual match

- Allocate 1 = match and 0 = no match - to each loan in the score column
- Tip – allocate 1 or 0 in a separate column – once you are confident of your matches, you can replace the 1/0 in the “Score” column

Certain rules apply:
1. Never match 1 name in the loan book to 2 names in the ALD
2. You can however match 2 names in the loan book to 1 name in the ALD

<table>
<thead>
<tr>
<th>level</th>
<th>sector</th>
<th>sector_ald</th>
<th>name</th>
<th>name_ald</th>
<th>score</th>
<th>manual match</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct_loan_taker automotive</td>
<td>automotive</td>
<td>Aston Martin</td>
<td>aston martin</td>
<td>1</td>
<td>1</td>
<td>rule 1</td>
</tr>
<tr>
<td>direct_loan_taker automotive</td>
<td>automotive</td>
<td>Aston Martin</td>
<td>Aston Martin UK</td>
<td>0.9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>direct_loan_taker oil&gas</td>
<td>oil&gas</td>
<td>BP plc</td>
<td>BP plc</td>
<td>1</td>
<td>1</td>
<td>rule 2</td>
</tr>
<tr>
<td>direct_loan_taker oil&gas</td>
<td>oil&gas</td>
<td>BP</td>
<td>BP plc</td>
<td>0.9</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Extra info of the rules above

1. This would lead the loan being split across two companies
2. This is allowed
Work flow:
Step 3. Manual match

• Rules continued:
 3. Do not match a direct loan taker to an ultimate parent – see column “level”

<table>
<thead>
<tr>
<th>level</th>
<th>sector</th>
<th>sector_ald</th>
<th>name</th>
<th>name_ald</th>
<th>score</th>
<th>manual match</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct_loantaker</td>
<td>power</td>
<td>duke floria</td>
<td>duke</td>
<td>0.8</td>
<td>0</td>
<td>rule 3</td>
</tr>
<tr>
<td>ultimate_parent</td>
<td>power</td>
<td>duke</td>
<td>duke</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>direct_loantaker</td>
<td>power</td>
<td>duke floria</td>
<td>duke floria</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

4. Do not match across sectors. (This is only relevant when setting the by_sector argument to equal FALSE)

<table>
<thead>
<tr>
<th>level</th>
<th>sector</th>
<th>sector_ald</th>
<th>name</th>
<th>name_ald</th>
<th>score</th>
<th>manual match</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct_loantaker</td>
<td>power</td>
<td>duke floria</td>
<td>duke floria</td>
<td>1</td>
<td>1</td>
<td>rule 4</td>
</tr>
<tr>
<td>direct_loantaker</td>
<td>automotive</td>
<td>duke floria</td>
<td>duke floria</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Extra info of the rules above

3. In doing so you would attribute the production values of the UP to the DL. The UP should be matched to the UP. In reality if you can not match to the DL then the match will be taken at the UP level anyway (this comes in the next step). By doing it this way you can preserve the fact that the match is made at the UP level. This may then be important when considering the match success rate and calculating coverage.

4. See the column “sector” and “sector_ALD”. If this is due to the sector being incorrect in the loan book. You can remedy this in the overwrite file (next slide)
Extra info of the rules above

5. There may be cases where the company name appears similar and hence receives a high score in the algorithm. This may in fact be a completely different company and hence matching may cause inaccurate results. A good way to check is by searching for the companies and comparing websites.

6. If the company is in the ALD but not in the match file, due to the name being recorded differently. Then you have two options; either decreases the min_score threshold or failing that you can change the name using the overwrite file. (next slide)
Work flow:
Step 3. Manual match

• Rules continued:
 7. Change in ownership of a company not recorded in either the ALD or the LBK –
 investigate and use the overwrite file (next slide) to change the LBK so the
 company can be matched to the ALD

 8. If all of the above fail, then it is possible that a company does not exist in the ALD
 -- Contact the data provider

Extra info of the rules above

7. Mergers and changes of ownership: In cases where you can not find a match and
 can not find the company in the ALD it is possible that the company has been
 acquired by a separate entity and is hence recorded as a different company in the
 ALD or the LBK. Here you can use the overwrite file to change the company name to
 the one that is present in the ALD.

8. When you can not get a successful match at the DL level you should try to match at
 the UP level. If the company still can’t be found you should not attempt to match this
 to a “similar” company. This should be registered as coverage constraint. You can
 then explore further options to how to increase the coverage of the ALD – for
 example by contacting your data provider.
Work flow: Step 4. Overwrite file

- In certain cases you may wish to change the name or sector of the company in the loan book to match that in the ALD.
- To do this, open the overwrite file in excel – this can be found in r2dii.data::overwrite_demo.

- Populate it with the name / sector changes you wish to carry out.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>level</td>
<td>id_2di</td>
<td>name</td>
<td>sector</td>
<td>source</td>
</tr>
<tr>
<td>2</td>
<td>direct_loantaker</td>
<td>DL294</td>
<td>bee hatchery</td>
<td>coal</td>
<td>manual</td>
</tr>
<tr>
<td>3</td>
<td>ultimate_parent</td>
<td>UP15</td>
<td>alpine india</td>
<td>power</td>
<td>manual</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Load this file in as an argument in the r2dii.match::match_name function.

```
matched_file_overwrite <- match_name(your_loanbook, your_ald, overwrite = overwrite_file)
```

From the previous slide you may have identified cases where you wish to either change the sector, due to incorrect data entry or misinterpretation of sector classification codes. Or you may want to change the name of a company (note that this is not changing the company but rather changing the way the company is recorded). This may occur due to the name being recorded differently in the two data sets and falling below the matching algorithms minimum threshold. In is also possible that there has been a change in ownership as per the rules in the previous slides.

Code------------------------------

```r
# create the overwrite file
overwrite_file <- r2dii.data::overwrite_demo

# export it to excel
write.csv(overwrite_file, ".....file path.../overwrite_file.csv")

# populate the overwrite file with the manual matches that you want to change in the Loanbook
# this can be done in excel
```
re-run the match_name stage with the overwrite file
matched_file_overwrite <- match_name(your_loanbook, your_ald, overwrite = overwrite_file)

export to excel
write.csv(matched_file_overwrite, ".....file path.../match_file_overwrite.csv")
Work flow:
Step 5.1. Combine all your matches

- All the matches must be combined into one file
- e.g. “validated_matches” file
- This can be done in Excel
- Read the “validated_matches” file back into R

```r
validated_matches <- read.csv(".....file path.../validated_matches.csv")
```

NB – It is possible to do this by sector. So you may have validated_match_auto.csv, validated_match_power.csv etc...

You must combine all the matches into one file – This may be from the overwrite_match_file and the Manual_match file. You may have broken up the matching into chunks for different people to do. Which ever way you have done it, it is they must all be combined in the end.

Code-----------------------------

combine your previous manual matches and your new matches found in the overwrite phase
creating a new file "validated_matches"
this can be done on excel

read the finalised match file into R

validated_matches <- read.csv(".....file path.../validated_matches.csv")
Work flow: Step 5.2. Prioritize Matches

• The prioritize function selects the best match for the loan
• By default, this is set at the Direct Loan taker level. When the Direct loan taker cannot be matched, the Ultimate Parent is used

```
lbk_ready <- prioritize(validated_matches)
```

• If instead you would like the production values of the Ultimate Parent to be selected you can do so using the following code

```
lbk_ready <- prioritize(validated_matches, priority = rev)
```

• Note – This is an essential step – do not try to skip it

NB – It is possible to do this by sector. So you will have lbk_ready_auto, lbk_ready_power etc...

Code------------------------

```
# prioritise the matches - taking the best match e.g. the direct loan taker for each loan
lbk_ready <- prioritize(validated_matches)

# if you want to take the ultimate parent match to be taken forward instead of the
# direct loan taker match you can do so using the following
# (this is only an option)
lbk_ready <- prioritize(validated_matches, priority = rev)
```
Next steps

• Analysis / Visualisation webinar (date TBC) – www.2degrees-investing.org/events
• Follow the instructions on the [r2dii.analysis website](http://r2dii.analysis)
• To access the previous webinar on the methodology and further training materials and user guides, please visit www.TransitionMonitor.com and the PACTA for Banks Tab
Q&A
Contacts

• PACTA for Banks related queries: banks@2degrees-investing.org
• General 2DII queries: contact@2degross-investing.org
• www.2degrees-investing.org
• www.transitionmonitor.com
Extra info of the rules above

1. This would lead the loan being split across two companies

2. This is allowed

3. In doing so you would attribute the production values of the UP to the DL. The UP should be matched to the UP. In reality if you can not match to the DL then the match will be taken at the UP level anyway (this comes in the next step). By doing it this way you can preserve the fact that the match is made at the UP level. This may then be important when considering the match success rate and calculating coverage.

4. See the column “sector” and “sector_ALD”. If this is due to the sector being incorrect in the loan book. You can remedy this in the overwrite file (next slide)

5. There may be cases where the company name appears similar and hence receives a high score in the algorithm. This may in fact be a completely different company and hence matching my cause inaccurate results. A good way to check is by searching for the companies and comparing websites.
6. If the company is in the ALD but not in the match file, due to the name being recorded differently. Then you have two options; either decreases the min_score threshold or failing that you can change the name using the overwrite file. (next slide)

7. Mergers and changes of ownership: In cases where you can not find a match and can not find the company in the ALD it is possible that the company has been acquired by a separate entity and is hence recorded as a different company in the ALD or the LBK. Here you can use the overwrite file to change the company name to the one that is present in the ALD.

8. When you can not get a successful match at the DL level you should try to match at the UP level. If the company still can’t be found you should not attempt to match this to a “similar” company. This should be registered as coverage constraint. You can then explore further options to how to increase the coverage of the ALD – for example by contacting your data provider.